Drying in nanoporous media with Kelvin effect: Capillary imbibition against evaporation by smoothed particle hydrodynamics method

Author:

Amrofel Nathan1ORCID,Dymitrowska Magdalena2ORCID,Obliger Amaël3ORCID,Tinet Anne-Julie1ORCID,Golfier Fabrice1ORCID

Affiliation:

1. Université de Lorraine, CNRS 1 , GeoRessources, F-54000 Nancy, France

2. PSE-ENV/SPDR/LETIS, Institut de Radioprotection et de Sûreté Nucléaire (IRSN) 2 , Fontenay-aux-Roses, France

3. Institut des Sciences Moléculaires, Université de Bordeaux – Bordeaux INP – CNRS, UMR 5255 3 , F-33400 Talence, France

Abstract

Understanding drying processes in nanoporous media is of great importance in many technological and industrial situations. To better understand how gas moves through clayey rocks, of interest for underground disposal of radioactive wastes, we propose using pore-scale direct numerical simulations. In this study, we use the Smoothed Particle Hydrodynamics method, which has proved to be an effective approach for simulating complex fluid dynamics within porous media at the nanoscale. Our simulations consider capillary-dominated two-phase flow with evaporation and condensation at liquid–gas interfaces, coupled to the diffusion of water vapor in the gas phase, as well as the Kelvin effect, which is a specific feature of nanopores. Our evaporation-condensation model is validated against analytical solutions. The size of the compact support of kernel function and the particle density required to obtain accurate and stable results of capillary pressure are investigated. Drying regimes, capillary-driven and evaporated-driven, are explored. A specific effort is made to highlight the influence of the Kelvin effect on desaturation and the creation of preferential paths for gas flow as well as its impact on drying rate. The role of condensation due to local vapor concentration conditions is also emphasized.

Funder

EURAD project

NEEDS MECHE project

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3