Bandgap tuning in ZnxCd1−xTe superlattices through variable atomic ordering

Author:

Barone V.1ORCID,Ellingson R. J.1ORCID,Khare S. V.1

Affiliation:

1. Department of Physics, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo , Toledo, Ohio 43606, USA

Abstract

We explore the entire search space of 32-layer ZnxCd1−xTe superlattices to find the structures that minimize and maximize the bandgap at each possible zinc concentration. The searching is accomplished through an accurate and efficient combination of valence force field dynamics, the empirical pseudopotential method, and the folded spectrum method. We also describe the use of an alternate preconditioner that improves the robustness and efficiency of the locally optimal preconditioned conjugate gradient’s solutions to the folded spectrum method. The physical properties of these superlattices, such as their formation energies, bandgaps, densities of states, effective masses, and optical response functions, are investigated with density functional theory paired with hybrid functionals and compare well to available experimental measurements. It is revealed that the bandgap of ZnxCd1−xTe may change by up to 0.2 eV depending on how the layers in the superlattice are ordered. Stacking order has a large, irregular effect on the effective masses, but optical response functions seem insensitive to it.

Funder

Air Force Research Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3