Correlation of metal-to-insulator transition and strain state of VO2 thin films on TiO2 (110) substrates

Author:

Lu Hao12ORCID,Li Lei1ORCID,Tang Zhiwu1ORCID,Xu Maji1,Zheng Yonghui3ORCID,Becker Martin2ORCID,Lu Yinmei1,Li Mingkai1ORCID,Li Pai1,Zhang Zaoli3ORCID,Klar Peter J.2ORCID,He Yunbin1ORCID

Affiliation:

1. Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Lab of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Polymer Materials, and School of Materials Science & Engineering, Hubei University 1 , Wuhan 430062, China

2. Institute of Experimental Physics I and Center of Materials Research (ZfM/LaMa), Justus Liebig University Giessen 2 , Giessen, Germany

3. Erich Schmid Institute of Materials Science, Austrian Academy of Sciences 3 , A-8700 Leoben, Austria

Abstract

We explore the possibility of tuning the metal-to-insulator transition (MIT) of crystalline VO2 thin films by strain engineering. We deposit high-quality VO2 epitaxial films of different thicknesses on TiO2 (110) substrates by pulsed laser deposition. The strain state of the deposited film varies with its thickness. This allows us to correlate the MIT characteristics with the strain state of the VO2 film by a careful characterization of the structural and electrical properties. Thin VO2 films on TiO2 (110) substrates are almost fully strained up to thicknesses of about 20 nm and exhibit tensile strain along the c axis of the (high-temperature) metallic rutile phase leading to an increase in the MIT temperature by as much as 30 °C in comparison to the almost fully relaxed 300 nm-thick VO2 film. The strain gradient within the thicker samples leads to a continuous serial switching of layered regions of the VO2 film from the insulating to the metallic state with increasing temperature.

Funder

National Natural Science Foundation of China

Sino-German Mobility Program

Natural Science Foundation of Hubei Province

Program for Science and Technology Innovation Team in Colleges of Hubei Province

German BMBF

Austrian innovation fund

DFG research grant

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3