Features of temperature dependences electrical resistance of Bi88.08Mn11.92 in magnetic fields

Author:

Terekhov A. V.12,Rogacki K.3,Yarovyi V. M.12,Kovalyuk Z. D.4,Lähderanta E.5,Khristenko E. V.12,Solovjov A. L.123

Affiliation:

1. B. Verkin Institute for Low Temperature Physics and Engineering 1 of the , Kharkiv 61103, Ukraine

2. National Academy of Sciences of Ukraine 1 of the , Kharkiv 61103, Ukraine

3. Institute for Low Temperatures and Structure Research 2 , Polish Academy of Sciences, Wroclaw 50-950, Poland

4. I. M. Frantsevich Institute for Problems of Material Science of the National Academy of Science of Ukraine 3 , Chernivtsi 58001, Ukraine

5. Lappeenranta University of Technology, School of Engineering Science 4 , Lappeenranta 53850, Finland

Abstract

The temperature dependences of the electrical resistance of the solid solution of Bi88.08Mn11.92 in the temperature range of 2–300 K and magnetic fields up to 90 kOe for both H ⊥ I and H || I are studied. It has been shown that in a magnetic field, the temperature dependences of the electrical resistance of Bi88.08Mn11.92 show maxima (insulator–metal transition) for both the H ⊥ I and H || I orientations. The temperatures of the maxima increase with increasing field. The appearance of a noticeable difference between the temperature dependences of the electrical resistances of Bi88.08Mn11.92 and the compound Bi95.69Mn3.69Fe0.62 with a lower Mn content and pure Bi is discussed. It has been established that the magnetoresistance of Bi88.08Mn11.92 is positive over the entire temperature range studied and reaches a value of 3290% in a magnetic field of 90 kOe for H ⊥ I, which is approximately 400% higher than in the Bi95.69Mn3.69Fe0.62 compound with lower Mn content. A suggestion has been made that the peculiarities temperature dependences behavior of the electrical resistance of Bi88.08Mn11.92 without a magnetic field and in the field, are largely due to the influence of internal magnetism of the α-BiMn phase and can be explained within the framework of the multiband theory.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3