A hydrodynamic approach to reproduce multiple spinning vortices in horizontally rotating three-dimensional liquid helium-4

Author:

Tsuzuki SatoriORCID

Abstract

This paper reports a three-dimensional (3D) simulation of a rotating liquid helium-4, using a two-fluid model with spin-angular momentum conservation. Our model was derived from the particle approximation of an inviscid fluid with residual viscosity. Despite the fully classical mechanical picture, the resulting system equations were consistent with those of the conventional two-fluid model. We consider bulk liquid helium-4 to be an inviscid fluid, assuming that the viscous fluid component remains at finite temperatures. As the temperature decreased, the amount of the viscous fluid component decreased, ultimately becoming a fully inviscid fluid at absolute zero. Weak compressibility is assumed to express the volume change because some helium atoms do not render fluid owing to Bose–Einstein condensations or change states because of local thermal excitation. One can solve the governing equations for an incompressible fluid using explicit smoothed-particle hydrodynamics, simultaneously reproducing density fluctuations and describing the fluid in a many-particle system. We assume the following fluid–particle duality: a hydrodynamic interfacial tension between the inviscid and viscous components or a local interaction force between two types of fluid particles. The former can be induced in the horizontal direction when non-negligible non-uniformity of the particles occurs during forced two-dimensional rotation, and the latter is non-negligible when the former is negligible. We performed a large-scale simulation of 3D liquid helium forced to rotate horizontally using 32 graphics processing units. Compared with the low-resolution calculation using 2.4 × 106 particles, the high-resolution calculation using 19.6 × 106 particles showed spinning vortices close to those of the theoretical solution. We obtained a promising venue to establish a practical simulation method for bulk liquid helium-4.

Funder

Japan Society for the Promotion of Science

Precursory Research for Embryonic Science and Technology

Publisher

AIP Publishing

Reference76 articles.

1. Diffusion mechanism of internal friction in a niobium–titanium alloy;Russ. Metall.

2. Low-temperature superconductors: Nb3Sn, Nb3Al, and NbTi;Superconductivity,2023

3. Carbon footprint of helium recovery systems;Low Temp. Phys.,2023

4. L. H. Wilson , “ The viscosity of gases,” Ph.D. thesis (Purdue University, 1950), available at https://docs.lib.purdue.edu/dissertations/AAI27714118/.

5. Macroscopic and molecular shear viscosity;Phys. Usp.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3