Systematical study on the aerodynamic control mechanisms of a 1:2 rectangular cylinder with Kirigami scales

Author:

Hu HaoqiORCID,Yang WenhanORCID,Meng HaoORCID,Gao DonglaiORCID

Abstract

Biomimetic flow control is being widely applied. In the present study, a biomimetic flow control method, i.e., Kirigami scales, was applied on a 1:2 rectangular cylinder. The effects of scales' shapes and pasting surfaces on the aerodynamics and circumferential flow patterns of a 1:2 rectangular cylinder were studied. Three scale shapes were investigated with different pasting methods, i.e., elliptical, circular, and triangular scales. The Reynolds number (Re) was set at 1.3–3.1 × 104. The surface pressure distributions and the integrated aerodynamic forces were further analyzed at Re = 1.3 × 104. Results show that pasting the elliptical scales on all surfaces performs best, reaching a 2.4% drag reduction and a 76.4% lift reduction. Moreover, the elliptical and triangular scales on the windward and leeward surfaces can significantly reduce the Re effect. To reveal the control mechanism, the particle image velocimetry technique was employed to obtain the circumferential and wake flow fields. The time-averaged and phase-averaged results indicate that the Kirigami scales can push the interactions of shear layers and the shedding vortices further downstream. The Proper orthogonal decomposition analysis and time-averaged turbulent kinetic energy (TKE) results indicate that the wake vortex shedding is significantly suppressed. The spanwise wake flow field was also investigated. Results show that the spanwise TKE values are significantly reduced. This study further deepened the application of Kirigami scales on the common blunt bodies.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3