Tunable magnetoresistance driven by electronic structure in Kagome semimetal Co1−xFexSn

Author:

Vijay Kritika12ORCID,Chandra L. S. Sharath23ORCID,Ali Kawsar4ORCID,Sagdeo Archna12ORCID,Tiwari Pragya1,Chattopadhyay M. K.23ORCID,Arya A.4ORCID,Banik Soma12ORCID

Affiliation:

1. Accelerator Physics and Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology 1 , Indore 452013, India

2. Homi Bhabha National Institute, Training School Complex, Anushakti Nagar 2 , Mumbai 400094, India

3. Free Electron Laser Utilization Laboratory, Raja Ramanna Centre for Advanced Technology 3 , Indore 452013, India

4. Glass and Advanced Materials Division, Bhabha Atomic Research Centre 4 , Mumbai 400085, India

Abstract

Topological quantum phenomena due to the presence of both Dirac fermions and flat bands in Kagome semimetal CoSn promise novel transport properties. In Kagome materials, the transport properties can be enhanced by moving the position of the flat band and Dirac fermions with doping. Here, we have investigated the magnetotransport and electronic properties by Fe doping in CoSn. A large positive magnetoresistance (MR) of ≈ 105% at 3 K and 8 T magnetic field has been observed in CoSn. Fe doping in Co1−xFexSn gives rise to negative MR with a large negative value for x = 0.2 (−8.4%) but decreases for x = 0.3 (−3.7%) and x = 0.4 (−2.7%). Tuning of MR from positive to negative values with Fe doping in CoSn is associated with the changes in energy position of the localized flat band and emergence of quasi-localized states near the Fermi level. The systematic variation of MR with increasing x depends both on the structural changes due to increase in the lattice parameters and on the near neighbor interactions of the Sn atoms with the Co atoms in the Kagome plane. The origin of quasi-localized states is associated with the electron hopping and the variation in the strength of localization with doping that leads to tunable MR properties in Co1−xFexSn.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3