Affiliation:
1. Institute of Physics, Polish Academy of Sciences 1 , Al. Lotników 32/46, 02-668 Warsaw, Poland
2. Faculty of Physics, University of Warsaw 2 , Pasteura 5, 02-093 Warsaw, Poland
Abstract
The isotropic and anisotropic coefficients Cnl,m of the long-range spherical expansion ∼1/Rn (R—the intermolecular distance) of the dispersion and induction intermolecular energies are calculated using the first principles for the complexes containing an aromatic molecule (benzene, pyridine, furan, and pyrrole) and alkali-metal (Li, Na, K, Rb, and Cs) or alkaline-earth-metal (Be, Mg, Ca, Sr, and Ba) atoms in their electronic ground states. The values of the first- and second-order properties of the aromatic molecules are calculated using the response theory with the asymptotically corrected LPBE0 functional. The second-order properties of the closed-shell alkaline-earth-metal atoms are obtained using the expectation-value coupled cluster theory and of the open-shell alkali-metal atoms using analytical wavefunctions. These properties are used for the calculation of the dispersion Cn,displ,m and induction Cn,indl,m coefficients (Cnl,m=Cn,displ,m+Cn,indl,m) with n up to 12 using the available implemented analytical formulas. It is shown that the inclusion of the coefficients with n > 6 is important for reproducing the interaction energy in the van der Waals region at R ≈ 6 Å. The reported long-range potentials should be useful for constructing the analytical potentials valid for the whole intermolecular interaction range, which are needed for spectroscopic and scattering studies.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献