Anisotropic coarse-grain Monte Carlo simulations of lysozyme, lactoferrin, and NISTmAb by precomputing atomistic models

Author:

Hatch Harold W.1ORCID,Bergonzo Christina23ORCID,Blanco Marco A.4ORCID,Yuan Guangcui5,Grudinin Sergei6ORCID,Lund Mikael7ORCID,Curtis Joseph E.8ORCID,Grishaev Alexander V.23ORCID,Liu Yun59ORCID,Shen Vincent K.1

Affiliation:

1. Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology 1 , Gaithersburg, Maryland 20899-8380, USA

2. Institute for Bioscience and Biotechnology Research 2 , Rockville, Maryland 20850, USA

3. Biomolecular Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology 3 , Gaithersburg, Maryland 20899-8380, USA

4. Discovery Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Inc. 4 , West Point, Pennsylvania 19486, USA

5. Center for Neutron Research, National Institute of Standards and Technology 5 , Gaithersburg, Maryland 20899, USA

6. CNRS, Grenoble INP, LJK, Université Grenoble Alpes 6 , 38000 Grenoble, France

7. Division of Computational Chemistry, Lund University 7 , Lund, Sweden

8. NIST Center for Neutron Research, National Institute of Standards and Technology 8 , Gaithersburg, Maryland 20899, USA

9. Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware 9 , Newark, Delaware 19711, USA

Abstract

We develop a multiscale coarse-grain model of the NIST Monoclonal Antibody Reference Material 8671 (NISTmAb) to enable systematic computational investigations of high-concentration physical instabilities such as phase separation, clustering, and aggregation. Our multiscale coarse-graining strategy captures atomic-resolution interactions with a computational approach that is orders of magnitude more efficient than atomistic models, assuming the biomolecule can be decomposed into one or more rigid bodies with known, fixed structures. This method reduces interactions between tens of thousands of atoms to a single anisotropic interaction site. The anisotropic interaction between unique pairs of rigid bodies is precomputed over a discrete set of relative orientations and stored, allowing interactions between arbitrarily oriented rigid bodies to be interpolated from the precomputed table during coarse-grained Monte Carlo simulations. We present this approach for lysozyme and lactoferrin as a single rigid body and for the NISTmAb as three rigid bodies bound by a flexible hinge with an implicit solvent model. This coarse-graining strategy predicts experimentally measured radius of gyration and second osmotic virial coefficient data, enabling routine Monte Carlo simulation of medically relevant concentrations of interacting proteins while retaining atomistic detail. All methodologies used in this work are available in the open-source software Free Energy and Advanced Sampling Simulation Toolkit.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monte Carlo molecular simulations with FEASST version 0.25.1;The Journal of Chemical Physics;2024-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3