Stochastic sensitivity analysis and early warning signals of critical transitions in a tri-stable prey–predator system with noise

Author:

Garain Koushik1ORCID,Sarathi Mandal Partha1ORCID

Affiliation:

1. Department of Mathematics, NIT Patna, Patna, Bihar 800005, India

Abstract

Near a tipping point, small changes in a certain parameter cause an irreversible shift in the behavior of a system, called critical transitions. Critical transitions can be observed in a variety of complex dynamical systems, ranging from ecology to financial markets, climate change, molecular bio-systems, health, and disease. As critical transitions can occur suddenly and are hard to manage, it is important to predict their occurrence. Although it is very tough to predict such critical transitions, various recent works suggest that generic early warning signals can detect the situation when systems approach a critical point. The most important indicator that predicts the risk of an upcoming critical transition is critical slowing down (CSD). CSD indicates a slow recovery rate from external perturbations of the stable state close to a bifurcation point. In this contribution, we study a two dimensional prey–predator model. Without any noise, the prey–predator model shows bistability and tri-stability due to the Allee effect in predators. We explore the critical transitions when external noise is added to the prey–predator system. We investigate early warning indicators, e.g., recovery rate, lag-1 autocorrelation, variance, and skewness to predict the critical transition. We explore the confidence domain method using the stochastic sensitivity function (SSF) technique near a stable equilibrium point to find a threshold value of noise intensity for a transition. The SSF technique in a two stage transition through confidence ellipse is described. We also show that the possibility of a transition to the predator-free state is independent of initial conditions. Our result may serve as a paradigm to understand and predict the critical transition in a two dimensional system.

Funder

Science and Engineering Research Board

University Grants Commission

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3