Development of NOTCH, an all-electron, beyond-NDDO semiempirical method: Application to diatomic molecules

Author:

Wang Zikuan1ORCID,Neese Frank1ORCID

Affiliation:

1. Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany

Abstract

In this work, we develop a new semiempirical method, dubbed NOTCH (Natural Orbital Tied Constructed Hamiltonian). Compared to existing semiempirical methods, NOTCH is less empirical in its functional form as well as parameterization. Specifically, in NOTCH, (1) the core electrons are treated explicitly; (2) the nuclear–nuclear repulsion term is calculated analytically, without any empirical parameterization; (3) the contraction coefficients of the atomic orbital (AO) basis depend on the coordinates of the neighboring atoms, which allows the size of AOs to depend on the molecular environment, despite the fact that a minimal basis set is used; (4) the one-center integrals of free atoms are derived from scalar relativistic multireference equation-of-motion coupled cluster calculations instead of empirical fitting, drastically reducing the number of necessary empirical parameters; (5) the (AA|AB) and (AB|AB)-type two-center integrals are explicitly included, going beyond the neglect of differential diatomic overlap approximation; and (6) the integrals depend on the atomic charges, effectively mimicking the “breathing” of AOs when the atomic charge varies. For this preliminary report, the model has been parameterized for the elements H–Ne, giving only 8 empirical global parameters. Preliminary results on the ionization potentials, electron affinities, and excitation energies of atoms and diatomic molecules, as well as the equilibrium geometries, vibrational frequencies dipole moments, and bond dissociation energies of diatomic molecules, show that the accuracy of NOTCH rivals or exceeds those of popular semiempirical methods (including PM3, PM7, OM2, OM3, GFN-xTB, and GFN2-xTB) as well as the cost-effective ab initio method Hartree–Fock-3c.

Funder

Max-Planck-Gesellschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3