A critical review and meta-analysis of xenon-on-carbon sputter yield data

Author:

Polk James E.1ORCID

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California 91109, USA

Abstract

A systematic review and meta-analysis of sputter yield data for xenon ions normally incident on graphite at energies below 2000 eV was undertaken to identify systematic errors, determine the best model parameter values to represent yield as a function of energy, quantify uncertainty, and determine if the data support differences in yields for different types of graphite. A critical examination of the 11 published data sets for high density graphite, pyrolytic graphite, and amorphous carbon showed that, in general, they were carefully controlled to minimize errors. The most significant quantifiable systematic errors were those caused by the neglect of doubly charged ions, chemical erosion, and the impact of secondary electron emission on ion flux measurements. The effects of gas uptake and outgassing on mass loss measurements and unrepresentative surface textures may have biased other experiments, but these effects could not be quantified. The semi-empirical Eckstein model for yield as a function of energy was fit to data for the three graphite types using a hierarchical Bayesian statistical model, producing recommended fit parameters and probability distributions representing uncertainty in yields. The results showed that differences in yield for high density graphite and pyrolytic graphite were not statistically significant. Apparent differences in yield for amorphous carbon disappeared when the single data set available for energies below 150 eV was corrected for reasonable values of double ion content. Recommended procedures to avoid systematic errors and additional experiments and modeling to fill in gaps in our understanding are included.

Funder

Space Technology Mission Directorate

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3