Cyanonaphthalene and cyanonaphthyl radicals: Vibrational structures via computed negative ion photoelectron spectra and thermochemistry of 1- and 2-cyanonaphthalene

Author:

White Nolan J.1ORCID,Vargas Lucia A.12,Tunstall Wyatt W.12,Koku Hannadige Abeysooriya Dushmantha N.13ORCID,Gichuhi Wilson K.1ORCID

Affiliation:

1. Department of Chemistry, Tennessee Tech University 1 , 1 William L. Jones Dr., Cookeville, Tennessee 38505, USA

2. Department of Chemical Engineering, Tennessee Tech University 2 , 1 William L. Jones Dr., Cookeville, Tennessee 38505, USA

3. School of Environmental Studies, Tennessee Tech University 3 , 1 William L. Jones Dr., Cookeville, Tennessee 38505, USA

Abstract

A double harmonic oscillator model is applied to compute the negative ion photoelectron spectra (NIPES) of the 1- and 2-cyanonaphthalene (CNN) radical anions. The computed Franck–Condon factors utilize optimized structures and harmonic vibrational frequencies obtained using density functional theory with the B3LYP 6-311++G (2d,2p) basis set while considering the mode-mixing Duschinsky effects. To test the accuracy of our model, the NIPES of α and β naphthyl radical anions were computed, and a strong agreement between the slow electron velocity-map ion imaging spectra and the predicted spectra was found. The adiabatic electron affinities (EAs) of the ground singlet states (S0) in 1-CNN and 2-CNN are 0.856 and 0.798 eV, respectively. The origin of the lowest-lying triplet (T1) states in 1-CNN and 2-CNN is found to be 3.226 and 3.266 eV, resulting in singlet–triplet energy splittings (ΔEST) of 2.370 and 2.468 eV, respectively. Both the NIPES for electron detachment to the S0 and T1 states exhibit well-resolved vibrational features, allowing for the assignment of several vibrational fundamental frequencies. Following deprotonation, several isomers are formed, with the most stable deprotonated radical anions in 1-CNN and 2-CNN, corresponding to the removal of the most acidic proton, with EAs of 2.062 and 2.16 eV. The rich spectroscopic and thermochemical data obtained in the current study make the CNN radical anions and their deprotonated species interesting systems for investigation in gas-phase, negative-ion experiments.

Funder

Tennessee Tech Faculty Research Grant

Camille and Henry Dreyfus Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3