Abstract
This study investigates the dynamic modeling of a spherical vapor bubble in an infinite liquid. Initially, the liquid is in a state of saturation, but then, there is a change in ambient pressure. Unlike previous studies that assumed vapor saturation, our model fully considers the metastable fluid state of subcooled vapor and superheated liquid. The theoretical model is based on the state equation of vapor and the kinetic theory of gases, allowing the visualization of the effects of superheating and subcooling on the bubble pressure and the phase transition rate. The accuracy of the numerical solutions for the bubble collapse and growth is confirmed by experimental results using water as the working fluid. Two approaches of heat transfer simplification are validated in the numerical solution, and an adhesion coefficient within the range of 0.1–1 is recommended for the calculation. Additionally, this study provides insights into how the metastable fluid state affects the bubble pressure and phase transition, especially in the early stages of bubble collapse. Furthermore, the conservation of vapor mass inside the bubble is also demonstrated.
Funder
Open Fund of State Key Laboratory of Eco-hydraulicsin Northwest Arid Regine
National Natural Science Foundation of China
Creative Seed Fund of Shanxi Research Institude for Clean Energy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献