Entropy-favorable adsorption of polymer-grafted nanoparticles at fluid–fluid interfaces

Author:

Li Bing1ORCID,Zhang Pei-Lei12,Sun Zhao-Yan12ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 130022 Changchun, China

2. University of Science and Technology of China 2 , Hefei 230026, China

Abstract

The adsorption of polymer-grafted nanoparticles at interfaces is a problem of fundamental interest in physics and soft materials. This adsorption behavior is governed by the interplay between interaction potentials and entropic effects. Here, we use molecular dynamics simulations and umbrella sampling methods to study the adsorption behavior of a Janus-like homopolymer-grafted nanoparticle at fluid–fluid interfaces. By calculating the potential of the mean force as the particle moves from fluid A to the interface, the adsorption energy Ea can be obtained. When two homopolymer chains with types A and B are grafted to the opposite poles of the particle, Ea shows a scaling behavior with respect to chain length N: Ea ∝ N0.598. This is determined by the interactions between polymers and fluids. The enthalpy dominates, and the entropy effects mainly come from the rotational entropy loss of the polymer-grafted nanoparticle at interfaces, which disfavors the stabilization of particles at interfaces. When the grafted polymer number m is large, the adsorption energy exhibits a linear dependence on m. While the enthalpy dominates the behavior, the entropy becomes significant at a larger chain length of N = 15, where the configurational entropy of the polymer chains dominates the entropy of the system. The globule–coil transition occurs when polymers move from poor solvents to good solvents, increasing the configurational entropy and favoring the stabilization of particles at interfaces. Our study provides novel insights into the stabilization mechanism of polymer-grafted nanoparticles at interfaces and reveals the stabilization mechanism favored by the configurational entropy of grafted polymer chains.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3