Computing with magnetic tunnel junction based sigmoidal activation functions

Author:

Bao Youwei1,Yang Shuhan1ORCID,Yao Zhaoyang1,Yang Hyunsoo1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, National University of Singapore , Singapore 117576, Singapore

Abstract

Nonlinear activation functions play a crucial role in artificial neural networks. However, digital implementations of sigmoidal functions, the commonly used activation functions, are facing challenges related to energy consumption and area requirements. To address these issues, we develop a proof-of-concept computing system that utilizes magnetic tunnel junctions as the key element for implementing sigmoidal activation functions. Using this system, we train a neural network for speech separation. When compared to state-of-the-art digital implementations, our scalable circuit has the potential to consume up to 383 times less energy and occupy 7354 times smaller area. These results pave the way for more efficient computing systems in the future.

Funder

Advanced Research and Technology Innovation Centre, College of Design and Engineering, National University of Singapore

National Research Foundation Singapore

Ministry of Education Singapore

Publisher

AIP Publishing

Reference57 articles.

1. D. Patterson , J.Gonzalez, Q.Le, C.Liang, L.-M.Munguia, D.Rothchild, D.So, M.Texier, and J.Dean, “ Carbon emissions and large neural network training,” arXiv:2104.10350 (2021).

2. In-memory computing with resistive switching devices;Nat. Electron.,2018

3. Memristive crossbar arrays for brain-inspired computing;Nat. Mater.,2019

4. Physics for neuromorphic computing;Nat. Rev. Phys.,2020

5. A novel approximation methodology and its efficient VLSI implementation for the sigmoid function;IEEE Trans. Circuits Syst. II,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3