Limits of entrainment of circadian neuronal networks

Author:

Psarellis Yorgos M.1ORCID,Kavousanakis Michail2ORCID,Henson Michael A.3ORCID,Kevrekidis Ioannis G.14ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Johns Hopkins University 1 , Baltimore, Maryland 21218, USA

2. School of Chemical Engineering, National Technical University of Athens 2 , Zografou, Athens 15780, Greece

3. Department of Chemical Engineering, University of Massachusetts Amherst 3 , Amherst, Massachusetts 01003, USA

4. Department of Applied Mathematics and Statistics, Johns Hopkins University 4 , Baltimore, Maryland 21218, USA

Abstract

Circadian rhythmicity lies at the center of various important physiological and behavioral processes in mammals, such as sleep, metabolism, homeostasis, mood changes, and more. Misalignment of intrinsic neuronal oscillations with the external day–night cycle can disrupt such processes and lead to numerous disorders. In this work, we computationally determine the limits of circadian synchronization to external light signals of different frequency, duty cycle, and simulated amplitude. Instead of modeling circadian dynamics with generic oscillator models (e.g., Kuramoto-type), we use a detailed computational neuroscience model, which integrates biomolecular dynamics, neuronal electrophysiology, and network effects. This allows us to investigate the effect of small drug molecules, such as Longdaysin, and connect our results with experimental findings. To combat the high dimensionality of such a detailed model, we employ a matrix-free approach, while our entire algorithmic pipeline enables numerical continuation and construction of bifurcation diagrams using only direct simulation. We, thus, computationally explore the effect of heterogeneity in the circadian neuronal network, as well as the effect of the corrective therapeutic intervention of Longdaysin. Last, we employ unsupervised learning to construct a data-driven embedding space for representing neuronal heterogeneity.

Funder

Multidisciplinary University Research Initiative

National Institutes of Health

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3