Affiliation:
1. Korea Institute of Energy Research 1 , 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
2. University of Science and Technology 2 , 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
3. Korea Institute of Machinery and Materials 3 , 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
Abstract
Nanomaterials synthesized through laser irradiation have numerous applications in the field of energy storage and conversion. Conventional methods for fabricating nanomaterials often involve extended reaction times, making them susceptible to issues such as reproducibility, impurities, and inhomogeneity. To address these issues, a novel strategy of synthesizing nanomaterials via solvent-free laser irradiation in the gas phase is proposed as a potential solution. This innovative strategy offers ultrafast heating and cooling processes compared to conventional time-consuming methods, resulting in the formation of homogeneous nanosystems within femto- to nanosecond timeframes. The focused laser beam induces rapid photothermal and photochemical effects in either air or an inert gas atmosphere, enabling the rapid production of nanomaterials with precise control over geometry, chemistry, crystallinity, and defect density by adjusting processing conditions and sintering mediums. This review provides insights into the rapid solvent-free laser-assisted synthesis of nanomaterials using natural carbon-based materials, polymers, metal–organic frameworks, and inorganic species in both air and inert atmospheres. The introduction of photo-irradiation across a wide range of precursors facilitates phase transitions and surface functionalization in the resulting nanoproducts. We also discuss the effects of altering laser wavelengths, pulse widths, fluences, and repetition rates on both surface and bulk properties of the final products. Finally, we explore the applications of laser-induced nanomaterials in areas such as rechargeable batteries, supercapacitors, solar cells, and catalysis.
Funder
Korea Institute of Energy Research
Ministry of Science and ICT, South Korea
Korea Institute of Machinery and Materials
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science