The role of 3D electrostatic field in modeling the electrospinning process

Author:

Rahman S. M.1ORCID,Gautam S.1,Tafreshi H. V.12ORCID,Pourdeyhimi B.2ORCID

Affiliation:

1. Mechanical and Aerospace Engineering Department, North Carolina State University 1 , Raleigh, North Carolina 27695-7910, USA

2. The Nonwovens Institute, North Carolina State University 2 , Raleigh, North Carolina 27606-7910, USA

Abstract

Electrospinning is a cost-effective but very intricate method of producing polymeric nanofibers at room temperature. Unfortunately however, it is extremely difficult to predict the diameter or other properties of the fibers produced via electrospinning a prior. In this paper, we present a new approach to simulate fiber formation during electrospinning. Our work builds on the mathematical framework that was originally developed by Reneker and Yarin in 2000. Our approach incorporates the 3D electrostatic field that surrounds the fiber in a Lagrangian discrete particle tracking algorithm that tracks the trajectory of the fiber in air and predicts its deposition velocity and diameter. We investigate the effects of electrostatic field spatial variation on fiber electrospinning and compare our results with those obtained using a constant electrostatic field, the traditional approach, and with experiments (conducted using polyurethane). We considered three different electrospinning configurations of single-needle-plate-collector, single-needle-drum-collector, and two-needles-drum-collector to investigate how different electrostatic fields impact fiber formation. The computational model developed in this work helps to advance the current state of the art in modeling the electrospinning process.

Funder

Nonwovens Institute, North Carolina State University

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3