A multiscale approach to coupled nuclear and electronic dynamics. II. Exact and approximated evaluation of nonradiative transition rates

Author:

Cortivo R.1ORCID,Campeggio J.1ORCID,Zerbetto M.1ORCID

Affiliation:

1. Department of Chemical Sciences, University of Padova , Via Marzolo 1, Padova, Italy

Abstract

This work follows a companion article, which will be referred to as Paper I [Campeggio et al., J. Chem. Phys. 158, 244104 (2023)] in which a quantum-stochastic Liouville equation for the description of the quantum–classical dynamics of a molecule in a dissipative bath has been formulated in curvilinear internal coordinates. In such an approach, the coordinates of the system are separated into three subsets: the quantum coordinates, the classical relevant nuclear degrees of freedom, and the classical irrelevant (bath) coordinates. The equation has been derived in natural internal coordinates, which are bond lengths, bond angles, and dihedral angles. The resulting equation needs to be parameterized. In particular, one needs to compute the potential energy surfaces, the friction tensor, and the rate constants for the nonradiative jumps among the quantum states. While standard methods exist for the calculation of energy and dissipative properties, an efficient evaluation of the transition rates needs to be developed. In this paper, an approximated treatment is introduced, which leads to a simple explicit formula with a single adjustable parameter. Such an approximated expression is compared with the exact calculation of transition rates obtained via molecular dynamics simulations. To make such a comparison possible, a simple sandbox system has been used, with two quantum states and a single internal coordinate (together with its conjugate momentum). Results show that the adjustable parameter, which is an effective decoherence time, can be parameterized from the effective relaxation times of the autocorrelation functions of the conjugated momenta of the relevant nuclear coordinates.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3