Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
Abstract
We have detected unique hydrodynamic topology in thin air film surrounding the central air dimple formed during drop impact on an immiscible liquid pool. The pattern resembles spinodal and finger-like structures typically found in various thin condensed matter systems. However, similar structures in thin entrapped gas films during drop impacts on solids or liquids have not been reported to date. The thickness profile and the associated dewetting dynamics in the entrapped air layer are investigated experimentally and theoretically using high-speed reflection interferometric imaging and linear stability analysis. We attribute the formation of multi-scale thickness perturbations, associated ruptures, and finger-like protrusions in the draining air film as a combined artifact of thin-film and Saffman–Taylor instabilities. The characteristic length scales depend on the air layer dimensions, the ratio of the liquid pool to droplet viscosity, and the air–water to air–oil surface tension.
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献