Manifold projection image segmentation for nano-XANES imaging

Author:

Tetef Samantha1ORCID,Pattammattel Ajith2ORCID,Chu Yong S.2ORCID,Chan Maria K. Y.3ORCID,Seidler Gerald T.1ORCID

Affiliation:

1. University of Washington 1 , Seattle, Washington 98195, USA

2. National Synchrotron Light Source II, Brookhaven National Laboratory 2 , Upton, New York 11973, USA

3. Center for Nanoscale Materials, Argonne National Laboratory 3 , Lemont, Illinois 60439, USA

Abstract

As spectral imaging techniques are becoming more prominent in science, advanced image segmentation algorithms are required to identify appropriate domains in these images. We present a version of image segmentation called manifold projection image segmentation (MPIS) that is generally applicable to a broad range of systems without the need for training because MPIS uses unsupervised machine learning with a few physically motivated hyperparameters. We apply MPIS to nanoscale x-ray absorption near edge structure (XANES) imaging, where XANES spectra are collected with nanometer spatial resolution. We show the superiority of manifold projection over linear transformations, such as the commonly used principal component analysis (PCA). Moreover, MPIS maintains accuracy while reducing computation time and sensitivity to noise compared to the standard nano-XANES imaging analysis procedure. Finally, we demonstrate how multimodal information, such as x-ray fluorescence data and spatial location of pixels, can be incorporated into the MPIS framework. We propose that MPIS is adaptable for any spectral imaging technique, including scanning transmission x-ray microscopy, where the length scale of domains is larger than the resolution of the experiment.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3