Study on the plasma characteristics in a needle-plate dielectric barrier discharge with a rotating dielectric plate

Author:

Yu Guanglin1ORCID,Jiang Nan1ORCID,Peng Bangfa1ORCID,Sun Haoyang2ORCID,Liu Zhengyan2ORCID,Li Jie1ORCID

Affiliation:

1. School of Electrical Engineering, Dalian University of Technology 1 , Dalian 116024, China

2. School of Environmental Science and Technology, Dalian University of Technology 2 , Dalian 116024, China

Abstract

The enhancement of plasma generation in atmospheric pressure dielectric barrier discharge (DBD) is gaining increasing interest for various plasma applications. In this paper, the effect of surface charges moving with the rotating dielectric plate on improving the generation of streamer channels is investigated by a statistical analysis of electrical measurements, optical diagnostics, and numerical simulation in a needle-plate DBD device with a rotating dielectric plate. Results suggest that rotating the dielectric plate can improve the spatiotemporal distribution of streamer channels by inducing a bending of the streamer channels and an increase in the number of discharges. Statistical results show that the number of current pulse and discharge energy are increased by 20% and 47%, respectively, at the rotating speed of 160 rps (revolution per second). Based on the interaction between the applied electric field and the electric field induced by surface charges, a formula is proposed to govern the effect of rotating the dielectric plate on the discharge energy and streamer bending. To further understand the mechanism of the influence of rotating the dielectric plate on plasma properties, a 2D fluid model is implemented, and the reduced electric field and streamer propagation are analyzed. Results show that the effective transfer and reuse of surface charges play an important role in the enhancement of plasma generation.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3