Statistical analysis of rotary atomization by phase Doppler anemometry

Author:

Rácz Erika1ORCID,Malý Milan2ORCID,Cejpek Ondřej2ORCID,Jedelský Jan2ORCID,Józsa Viktor1ORCID

Affiliation:

1. Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics 1 , Műegyetem rkp. 3., H-1111 Budapest, Hungary

2. Faculty of Mechanical Engineering, Brno University of Technology 2 , Technicka 2896/2, 616 69 Brno, Czech Republic

Abstract

Rotary atomization is used in a wide variety of fields, exploiting the external control option of the spray while no high-pressure fluid is needed. Most papers on rotary atomization deal with liquid jet breakup, while external spray characteristics are rarely evaluated; this is performed currently. The water spray was measured by a two-component phase Doppler anemometer. The optical setup requires a special measurement chamber to avoid spray deposition on the optical components. Therefore, the first goal was to find a proper filter that enables the removal of biased droplets by secondary flows. Since most droplets have a similar radial-to-tangential velocity ratio at each measurement point, i.e., scattering around a line, this was the first component of the best filter. The second component was the need for a positive radial velocity component. This filter efficiently removed droplets originating from alternative processes, increasing the R2 of the line fit. The physical soundness of this filter was checked by evaluating the effect of filtering on the angle of the velocity components of each droplet at a given measurement point. The proposed filter efficiently detected recirculation, a secondary effect of the measurement setup with less regular dataset shapes. Finally, the slope and intercept values of the fitted lines were evaluated and presented. The mean of the former followed the same trend irrespective of the rotational speed and the mass flow rate; it was principally dependent on the radial distance from the atomizer. The intercept showed a regular but less universal behavior.

Funder

National Research, Development and Innovation Office

Czech Science Fundation

Brno University of Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3