The internal flow behaviors during Taylor cone formation of pulsating electrohydrodynamic jet printing

Author:

Guan Yin1ORCID,Wang Mengduo1,Wu Shuang1,Sha Yanxiu1,Tian Yu2ORCID,Ye Dong2,Huang YongAn2ORCID

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China

Abstract

The toroidal vortex inside the Taylor cone is one of the most interesting features in electrohydrodynamic (EHD) jet printing. However, due to the considerable difficulty in capturing the microscopic internal fluid flow from the experiment, many aspects of the printing process are still not fully understood. Here, we present a numerical study on the Taylor cone formation process of pulsating EHD jet printing under the variations of several key operational parameters and liquid properties, namely, electric voltage, nozzle height, liquid surface tension coefficient, and liquid dynamic viscosity. In addition to the electrohydrodynamic motion of the liquid–gas interface, we focus our attention to the time evolution of the liquid flow and vortex inside the Taylor cone. The intensity of the vortex is evaluated by analyzing the absolute value of the swirling strength throughout the formation process. By virtue of examining the electric field distribution, interface charge density, velocity field, and the absolute value of the swirling strength from the numerical data, we elucidate the influences of the aforementioned parameters on Taylor cone formation and internal flow behaviors. Eventually, a scaling law of [Formula: see text] between the maximum absolute value of the swirling strength and the dimensionless variables electric bond number [Formula: see text] and capillary number [Formula: see text] is proposed, which applies to all the parameters investigated in this work.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3