Deriving force fields with a multiscale approach: From ab initio calculations to molecular-based equations of state

Author:

Lyra Emerson P.1ORCID,Franco Luís F. M.1ORCID

Affiliation:

1. School of Chemical Engineering, University of Campinas, 13083-852 Campinas, São Paulo, Brazil

Abstract

Using theoretical and computational tools for predicting thermophysical properties of fluid systems and the soft matter has always been of interest to the physical, chemical, and engineering sciences. Certainly, the ultimate goal is to be able to compute these macroscopic properties from first-principles calculations beginning with the very atomic constitution of matter. In this work, Mie potential parameters were obtained through dimer interaction energy curves derived from ab initio calculations to represent methane and substituted-methane molecules in a spherical one-site coarse-grained model. Bottom-up-based Mie potential parameters of this work were compared with top-down-based ones from the statistical associating fluid theory (SAFT) models for the calculation of thermodynamic properties and critical point by molecular dynamics simulations and SAFT-VR Mie equation of state. Results demonstrated that bottom-up-based Mie potential parameters when averaging the Mie potential parameters of a representative population of conformers provide values close to the top-down-based ones from SAFT models and predict well properties of tetrahedral molecules. This shows the level of consistency embedded in the SAFT-VR Mie family of models and confers the status of a purely predictive equation of state for SAFT-VR Mie when a reasonable model is considered to represent a molecule of interest.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3