The future of solar forecasting in China

Author:

Yang Dazhi1ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Harbin Institute of Technology , Harbin, Heilongjiang, China

Abstract

The current grid code in China in regard to solar forecasting is, in my opinion, underdeveloped, especially in contrast to the rate at which photovoltaics are being installed. As such, explaining the limitations of the grid code and resetting pathways to improve it are thought utilitarian for those scientists and policymakers who are responsible for or aware of the grid code but have not themselves worked on the problem of forecasting. In this perspective article, I should first explain with respect to China's grid code the perceived deficiencies in the current forecasting research and practices, and then outline a five-stage workflow that could completely mitigate the situation. Among other things, the over-reliance on accuracy as the basis for gauging the goodness of forecasts is identified as a root cause for the status quo, and thus, I advocate a holistic forecast verification procedure that encompasses consistency, quality, and value. With that in mind, the proposed workflow for better solar forecasting for grid integration purposes relies on the effective information flow among the weather department, grid operators, and individual plant owners, which is inline with the current grid code. What goes beyond this is that the proposal further introduces a couple of concepts called “hierarchical reconciliation” and “firm forecasting,” which are new but are able to eliminate forecast errors wholly, thus making solar power dispatchable on the system level. With a slight premium incurred, it is now possible to manage solar plants, or variable renewables in general, in the same style as managing conventional fire-powered generators.

Funder

National Natural Science Foundation of China

China Meteorological Administration

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3