Phase-field analysis of the effects of particle size, diffusivities, and mechanical properties on the cracking of silicon nanoparticle

Author:

Choi Junhyeok12ORCID,Lee Yong Min23ORCID,Kim Sung Yeol1ORCID

Affiliation:

1. School of Mechanical Engineering, Kyungpook National University 1 , Daegu 702-701, South Korea

2. Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 2 , Daegu 42988, South Korea

3. Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 3 , Daegu 42988, Republic of Korea

Abstract

In this study, a multiphysics model that reproduces the cracking of Si nanoparticle for a battery application was demonstrated. Two types of cracks appear on Si nanoparticle during lithiation. An essential condition for surface crack (SC) nucleation and propagation is a fast charging rate to form a high concentration gradient of lithium ions near the surface. A slower charging rate induces internal cracks (ICs) radiating from the center of the particle. The critical charging rates, at which SC or IC occurs, decrease rapidly with increasing particle radius. This indicates the difficulty of cracking of small nanoparticles, which is in a good agreement with the previous experimental results. Multiple cracks can appear in the particle, especially when the diffusivity is high. These cracks can be combined during the charging process, leading to the fracture or isolation of the particles. Additionally, two different peak stresses and Young's moduli from the literature were used considering their effects on the cracking of Si nanoparticle films. We believe our results provide a guideline for the fabrication and operation of Si nanoparticle-based anodes for lithium ion batteries.

Funder

Ministry of Education

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3