Linear well posedness of regularized equations of sea-ice dynamics

Author:

Chatta Soufiane1,Khouider Boualem2ORCID,Kesri M’hamed1

Affiliation:

1. Faculty of Mathematics. University of Science and Technology Houari Boumediene. 1 BP32 El Alia, Bab Ezzaour, Algiers 16111, Algeria

2. Department of Mathematics and Statistics, University of Victoria 2 , P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada

Abstract

The viscous–plastic equations (VPE) of Hibler [J. Geophys. Res. 82(27), 3932–3938 (1977)] are widely adopted and used in Earth system models to represent sea-ice drift due to surface winds, ocean currents, and internal stresses. However, it has been reported by various investigators, at least in one space dimension, that both Hibler’s original equations and their variant using a pressure replacement are ill posed in divergent flow regimes. Especially, Guba et al. [J. Phys. Oceanogr. 43(10), 2185–2199 (2013)] shows that both variants are ill-posed when the flow divergence exceeds a minimum threshold and their results seem to extend to two dimensions when a tensile cut-off is used. In particular, Hibler uses a Heaviside function cut-off for the viscosity coefficients of the VPE’s to avoid a singularity at infinity. Lemieux et al. [J. Comput. Phys. 231(17), 5926–5944 (2012)] regularized the Heaviside function by a hyperbolic tangent for numerical efficiency. Here, we show that, for periodic data, the linearized one-dimensional regularized VPE’s, in which the Heaviside function is replaced with a hyperbolic tangent, is well posed in the case of Hibler’s original equations. Moreover, we prove that the linearization procedure, for the regularized equations, is consistent, in the sense that the residual converges to zero that the perturbation of the solutions goes to zero, in suitable norms.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3