Molecular dynamics study on the interfacial properties of mixtures of monomers of polyvinylpyrrolidone (PVP)-based battery binders on graphene and graphite surfaces

Author:

Gutiérrez Alberto12ORCID,Aparicio Santiago2ORCID,Pekarovicova Alexandra1,Wu Qingliu1ORCID,Atilhan Mert1ORCID

Affiliation:

1. Chemical and Paper Engineering Department, Western Michigan University 1 Kalamazoo, Michigan 49008-5462, USA

2. Department of Chemistry, University of Burgos 2 , 09001 Burgos, Spain

Abstract

This study investigates the behavior of two different mixtures of monomers of polyvinylpyrrolidone (PVP)-based battery binders, polyvinylpyrrolidone:polyvinylidene difluoride (PVP:PVDF) and polyvinylpyrrolidone:polyacrylic acid (PVP:PAA), at graphene and graphite interfaces using classical molecular dynamics simulations. The aim is to identify the best performing monomer binder blend and carbon-based material for the design of battery-optimized energy devices. The PVP:PAA monomer binder blend and graphite are found to have the best interaction energies, densification upon adsorption, and more ordered structure. The adsorption of both monomer binder blends is strongly guided by the higher affinity of PVP and PAA monomeric molecules for the surfaces compared to PVDF. The structure of adsorbed layers of PVP:PVDF monomer binder blend on graphene and graphite develops more quickly than PVP:PAA, indicating faster kinetics. This study complements a previous density functional theory study recently reported by our group and contributes to a better understanding of the nanoscopic features of relevant interfacial regions involving mixtures of monomers of PVP-based battery binders and different carbon-based materials. The effect of a blend of commonly used monomer binders on carbon-based materials is essential for obtaining tightly bound anode and cathode active materials in lithium-ion batteries, which is crucial for designing battery-optimized energy devices.

Funder

U.S. Department of Energy

European Union NextGenerationEU/PRTR Funds

Institute for Cyber-Enabled Research at Michigan State University

SCAYLE

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3