Conduction of excitation waves and reentry drift on cardiac tissue with simulated photocontrol-varied excitability

Author:

Nizamieva A. A.1ORCID,Kalita I. Y.1ORCID,Slotvitsky M. M.12ORCID,Berezhnoy A. K.1ORCID,Shubina N. S.1,Frolova S. R.12ORCID,Tsvelaya V. A.12ORCID,Agladze K. I.12ORCID

Affiliation:

1. Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology 1 , Dolgoprudny 141700, Russian Federation

2. M. F. Vladimirsky Moscow Regional Research Clinical Institute 2 , Moscow 129110, Russia

Abstract

The development of new approaches to suppressing cardiac arrhythmias requires a deep understanding of spiral wave dynamics. The study of spiral waves is possible in model systems, for example, in a monolayer of cardiomyocytes. A promising way to control cardiac excitability in vitro is the noninvasive photocontrol of cell excitability mediated by light-sensitive azobenzene derivatives, such as azobenzene trimethylammonium bromide (AzoTAB). The trans-isomer of AzoTAB suppresses spontaneous activity and excitation propagation speed, whereas the cis isomer has no detectable effect on the electrical properties of cardiomyocyte monolayers; cis isomerization occurs under the action of near ultraviolet (UV) light, and reverse isomerization occurs when exposed to blue light. Thus, AzoTAB makes it possible to create patterns of excitability in conductive tissue. Here, we investigate the effect of a simulated excitability gradient in cardiac cell culture on the behavior and termination of reentry waves. Experimental data indicate a displacement of the reentry wave, predominantly in the direction of lower excitability. However, both shifts in the direction of higher excitability and shift absence were also observed. To explain this effect, we reproduced these experiments in a computer model. Computer simulations showed that the explanation of the mechanism of observed drift to a lower excitability area requires not only a change in excitability coefficients (ion currents) but also a change in the diffusion coefficient; this may be the effect of the substance on intercellular connections. In addition, it was found that the drift direction depended on the observation time due to the meandering of the spiral wave. Thus, we experimentally proved the possibility of noninvasive photocontrol and termination of spiral waves with a mechanistic explanation in computer models.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3