Binary salt structure classification with convolutional neural networks: Application to crystal nucleation and melting point calculations

Author:

Scheiber H. O.1ORCID,Patey G. N.1ORCID

Affiliation:

1. Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

Abstract

Convolutional neural networks are constructed and validated for the crystal structure classification of simple binary salts such as the alkali halides. The inputs of the neural network classifiers are the local bond orientational order parameters of Steinhardt, Nelson, and Ronchetti [Phys. Rev. B 28, 784 (1983)], which are derived solely from the relative positions of atoms surrounding a central reference atom. This choice of input gives classifiers that are invariant to density, increasing their transferability. The neural networks are trained and validated on millions of data points generated from a large set of molecular dynamics (MD) simulations of model alkali halides in nine bulk phases (liquid, rock salt, wurtzite, CsCl, 5-5, sphalerite, NiAs, AntiNiAs, and β-BeO) across a range of temperatures. One-dimensional time convolution is employed to filter out short-lived structural fluctuations. The trained neural networks perform extremely well, with accuracy up to 99.99% on a balanced validation dataset constructed from millions of labeled bulk phase structures. A typical analysis using the neural networks, including neighbor list generation, order parameter calculation, and class inference, is computationally inexpensive compared to MD simulations. As a demonstration of their accuracy and utility, the neural network classifiers are employed to follow the nucleation and crystal growth of two model alkali halide systems, crystallizing into distinct structures from the melt. We further demonstrate the classifiers by implementing them in automated MD melting point calculations. Melting points for model alkali halides using the most commonly employed rigid-ion interaction potentials are reported and discussed.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3