Affiliation:
1. School of Chemistry and Materials Science, Guizhou Normal University 1 , Guiyang 550025, China
2. Key Laboratory for Functional Materials Chemistry of Guizhou Province 2 , Guiyang 550025, China
Abstract
Zeolitic Imidazolate Frameworks-8 (ZIF-8) is commonly used as an ideal precursor for non-noble metal catalysts because of its high specific surface area, ultra-high porosity, and N-rich content. Upon pyrolyzing ZIF-8 at 900 °C in Ar, the resulting material, referred to as Z8, displayed good activity toward the oxygen reduction reaction (ORR). Then the ZIF-8 was mixed with various conductive carbon materials, such as multiwall carbon nanotubes (MWCNTs), Acetylene black (ACET), Vulcan XC-72R (XC-72R), and Ketjenblack EC-600JD (EC-600JD), to form Z8 composites. The Z8/MWCNTs composite exhibited enhanced ORR activity owing to its network structure, meso-/microporous hierarchical porous structure, improved electrical conductivity, and graphitization. Subsequently, iron and nitrogen co-doping is achieved through the pyrolysis of a mixture comprising Fe, N precursor, and ZIF-8/MWCNTs, which is denoted as FeN-Z8/MWCNTs. The intrinsically high electrical conductivity of MWCNTs facilitated efficient electron transfer during the ORR, while the meso-/microporous hierarchical porous structure and network structure of Fe, N co-doped ZIF-8/MWCNTs promoted oxygen transport. The presence of Fe-containing species in the catalyst acted as activity centers for ORR. This strategy of preparing Z8 composites and modifying them with Fe, N co-doping offers an insightful approach to designing cost-effective electrocatalysts.
Funder
National Natural Science Foundation of China
Guizhou Guian Science and Technology Personnel Training Project
Guizhou Normal University Xueshuxinmiao
Youth Science and Technology Talent Development Project from Guizhou Provincial Department of Education
Guizhou Provincial Science and Technology Support Program