Vibronic recovering of functionality of quantum cellular automata based on bi-dimeric square cells with violated condition of strong Coulomb repulsion

Author:

Tsukerblat Boris12ORCID,Palii Andrew3ORCID,Zilberg Shmuel2ORCID,Korchagin Denis3ORCID,Aldoshin Sergey3ORCID,Clemente-Juan Juan Modesto4ORCID

Affiliation:

1. Ben-Gurion University of the Negev, Beer-Sheva, Israel

2. Department of Chemical Sciences, Materials Research Center, Ariel University, Ariel, Israel

3. Institute of Problems of Chemical Physics of RAS, Chernogolovka, Russian Federation

4. Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, Spain

Abstract

Strong Coulomb repulsion between the two charges in a square planar mixed-valence cell in quantum cellular automata (QCA) allows us to encode the binary information in the two energetically beneficial diagonal distributions of the electronic density. In this article, we pose a question: to what extent is this condition obligatory for the design of the molecular cell? To answer this question, we examine the ability to use a square-planar cell composed of one-electron mixed valence dimers to function in QCA in a general case when the intracell Coulomb interaction U is not supposed to be extremely strong, which means that it is comparable with the characteristic electron transfer energy (violated strong U limit). Using the two-mode vibronic model treated within the semiclassical (adiabatic) and quantum-mechanical approaches, we demonstrate that strong vibronic coupling is able to create a considerable barrier between the two diagonal-type charge configurations, thus ensuring bistability and polarizability of the cells even if the Coulomb barrier is not sufficient. The cases of weak and moderate Coulomb repulsion and strong vibronic coupling are exemplified by consideration of the cation radicals of the two polycyclic derivatives of norbornadiene [C12H12]+ and [C17H16]+ with the terminal C=C chromophores playing the role of redox sites. By using the detailed ab initio data, we reveal the main characteristics of the bi-dimeric cells composed of these molecules and illustrate the pronounced effect of the vibronic recovery clearly manifesting itself in the shape of the cell–cell response function. Revealing such “vibronic recovery” of strong localization when the strong U limit is violated suggests a way to a significant expansion of the class of molecular systems suitable as QCA cells.

Funder

Spanish MICIN

RSF

Ministry of Science and High Education of RF

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3