High-power in-phase and anti-phase mode emission from linear arrays of resonant-tunneling-diode oscillators in the 0.4-to-0.8-THz frequency range

Author:

Meng Fanqi1ORCID,Tang Zhenling2ORCID,Ourednik Petr3ORCID,Hazarika Jahnabi1ORCID,Feiginov Michael3ORCID,Suzuki Safumi2ORCID,Roskos Hartmut G.1ORCID

Affiliation:

1. Physikalisches Institut, Johann Wolfgang Goethe-Universität 1 , Frankfurt am Main, Germany

2. Department of Electrical and Electronic Engineering, Tokyo Institute of Technology 2 , Tokyo, Japan

3. Department of Electrical Engineering and Information Technology, TU Wien 3 , 1040 Vienna, Austria

Abstract

Oscillators based on resonant tunneling diodes (RTDs) are able to reach the highest oscillation frequency among all electronic THz emitters. However, the emitted power from RTDs remains limited. Here, we propose linear RTD oscillator arrays capable of supporting coherent emission from both in-phase and anti-phase coupled modes. The oscillation modes can be selected by adjusting the mesa areas of the RTDs. Both the modes exhibit constructive interference at different angles in the far field, enabling high-power emission. Experimental demonstrations of coherent emission from linear arrays containing 11 RTDs are presented. The anti-phase mode oscillates at ∼450 GHz, emitting about 0.7 mW, while the in-phase mode oscillates at around 750 GHz, emitting about 1 mW. Moreover, certain RTD oscillator arrays exhibit dual-band operation: changing the bias voltage allows for controllable switching between the anti-phase and in-phase modes. Upon bias sweeping in both directions, a notable hysteresis feature is observed. Our linear RTD oscillator array represents a significant step forward in the realization of large arrays for applications requiring continuous-wave THz radiation with substantial power.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Japan Society for the Promotion of Science London

Japan Science and Technology Agency

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3