Acoustic emission detection of micro-cracks under high pressure and high temperature in a deformation large-volume apparatus at the endstation P61B, PETRA III

Author:

Ma Shuailing12ORCID,Gasc Julien3ORCID,Farla Robert1ORCID

Affiliation:

1. Deutsches Elektronen-Synchrotron DESY 1 , Notkestraße 85, 22607 Hamburg, Germany

2. Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University 2 , Changchun 130012, China

3. Laboratoire de Géologie, CNRS – École Normale Supérieure 3 , PSL University, 24 Rue Lhomond, 75005 Paris, France

Abstract

We successfully developed an in situ acoustic emission (AE) detection setup that allows recording of AE waveforms (triggered and streaming) and simultaneous x-ray diffraction and imaging on samples deformed at high pressure and high temperature (HPHT) conditions in the Aster-15 Large Volume Press at the synchrotron beamline station P61B. This high pressure AE detection system is a powerful tool to investigate AE phenomena from the HPHT chamber. Six commercial acoustic sensors, protected by a tungsten carbide support ring on each anvil of the same material, have excellent survivability throughout each successive experiment. By pulsing each sensor in succession, the average wave velocity through the anvils and cell assembly can be determined at any press load. The distance between the sensors is obtained by x-ray radiography and by logging the positions of each hydraulic ram. This provides a basis for accurately locating AE events in the sample. The feasibility of this AE detection setup was confirmed by compression and deformation test runs using several different self-designed AE sources in specialized assemblies. The present setup proves to be extremely efficient and accurate in measuring brittle processes in samples under HPHT. It is now available for applications for beam time and experiments without x rays at P61B. Combined with synchrotron x rays, in situ pressure, temperature, strain rate and stress, and phase changes can be monitored while recording AE activity. We provide a powerful tool to investigate the origin of earthquakes, for example, causing AE emissions due to brittle dehydration reactions or phase transformations in the Earth.

Funder

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3