Molecular insights into methane hydrate dissociation: Role of methane nanobubble formation

Author:

Moorjani Bhavesh1ORCID,Adhikari Jhumpa1ORCID,Hait Samik2ORCID

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Bombay 1 , Powai, Mumbai 400076, India

2. Indian Oil Corporation Ltd. R&D Centre 2 , Faridabad 121007, India

Abstract

Understanding the underlying physics of natural gas hydrate dissociation is necessary for efficient CH4 extraction and in the exploration of potential additives in the chemical injection method. Silica being “sand” is already present inside the reservoir, making the silica nanoparticle a potential green additive. Here, molecular dynamics (MD) simulations have been performed to investigate the dissociation of the CH4 hydrate in the presence and absence of ∼1, ∼2, and ∼3 nm diameter hydrophilic silica nanoparticles at 100 bar and 310 K. We find that the formation of a CH4 nanobubble has a strong influence on the dissociation rate. After the initial hydrate dissociation, the rate of dissociation slows down till the formation of a CH4 nanobubble. We find the critical concentration and size limit to form the CH4 nanobubble to be ∼0.04 mole fraction of CH4 and ∼40 to 50 CH4 molecules, respectively. The solubility of CH4 and the chemical potential of H2O and CH4 are determined via Gibbs ensemble Monte Carlo simulations. The liquid phase chemical potential of both H2O and CH4 in the presence and absence of the nanoparticle is nearly the same, indicating that the effect of this additive will not be significant. While the formation of the hydration shell around the nanoparticle via hydrogen bonding confirms the strength of interactions between the water molecules and the nanoparticle in our MD simulations, the contact of the nanoparticle with the interface is infrequent, leading to no explicit effect of the nanoparticle on the dynamics of methane hydrate dissociation.

Funder

Center for Excellent in Oil, Gas and Energy, Indian Institute of Technology Bombay

Prime Minister’s Research Fellowship, Ministry of Education, Government of India

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3