Causal interaction in high frequency turbulence at the biosphere–atmosphere interface: Structure–function coupling

Author:

Hernandez Rodriguez Leila Constanza1ORCID,Kumar Praveen12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign 1 , Champaign, Illinois 61801, USA

2. Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign 2 , Champaign, Illinois 61801, USA

Abstract

At the biosphere–atmosphere interface, nonlinear interdependencies among components of an ecohydrological complex system can be inferred using multivariate high frequency time series observations. Information flow among these interacting variables allows us to represent the causal dependencies in the form of a directed acyclic graph (DAG). We use high frequency multivariate data at 10 Hz from an eddy covariance instrument located at 25 m above agricultural land in the Midwestern US to quantify the evolutionary dynamics of this complex system using a sequence of DAGs by examining the structural dependency of information flow and the associated functional response. We investigate whether functional differences correspond to structural differences or if there are no functional variations despite the structural differences. We base our analysis on the hypothesis that causal dependencies are instigated through information flow, and the resulting interactions sustain the dynamics and its functionality. To test our hypothesis, we build upon causal structure analysis in the companion paper to characterize the information flow in similarly clustered DAGs from 3-min non-overlapping contiguous windows in the observational data. We characterize functionality as the nature of interactions as discerned through redundant, unique, and synergistic components of information flow. Through this analysis, we find that in turbulence at the biosphere–atmosphere interface, the variables that control the dynamic character of the atmosphere as well as the thermodynamics are driven by non-local conditions, while the scalar transport associated with CO2 and H2O is mainly driven by short-term local conditions.

Funder

National Science Foundation

Advanced Research Projects Agency - Energy

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3