Microbubble collapse near a fiber: Broken symmetry conditions and a planar jet formation

Author:

Mur Jaka1ORCID,Agrež Vid1ORCID,Zevnik Jure1ORCID,Petkovšek Rok1ORCID,Dular Matevž1ORCID

Affiliation:

1. University of Ljubljana, Faculty of Mechanical Engineering , Aškerčeva 6, 1000 Ljubljana, Slovenia

Abstract

The collapse of microbubbles near a fiber is an example often encountered in water treatment situations and cavitation fibrillation processes. However, due to the broken symmetry conditions, this process has not been studied in detail experimentally or numerically, making it difficult to precisely measure or simulate the rapid bubble evolution during collapse. In this work, we present a novel experimental method, allowing for precisely repeatable cavitation events observation, combined with numerical simulations offering insight into pressure and velocity fields distribution developments in time. Both experimental and numerical works focused on small distances between the bubble and the fiber, where the physical interaction between subjects is the strongest. Four different bubble offsets were considered within the scope of this work, and very good agreement of numerical simulations with experiments was found in all cases. Two modes of bubble collapse were identified, leading to mushroom-shaped bubbles at positions closest to the fiber and a pear-shaped bubble at the farthest position. It is noteworthy that in all four cases, a planar jet formation toward the fiber was observed. The formed jet initially assumes an elongated shape, whereas its stability depends on the mode of bubble collapse. Numerical analysis of the planar jet as the defining feature of the collapse defined lower bounds for the actual values of peak jet velocities, ranging between 250 and 330 m/s, and the resulting impact pressures, which range from 100to 500 MPa.

Funder

European Research Council

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3