The dynamics of directional transport of a droplet in programmable electrowetting channel

Author:

Huo XiaozhiORCID,Li Long,Yang Yang,Liu Xuefeng,Yu Qiang,Wang QinggongORCID

Abstract

Directional fluid transport by electrowetting is an effective method for fluid management both on Earth and in the space environment. Exact control of the process is always hard because the fundamental dynamics of fluid flow and interface are not well understood. In this study, we examine the process of a sensible droplet transported directionally in an electrowetting channel. The electrodes of the channel are programmed to actuate the droplet at the most effective manner. We build a numerical model based on the phase field method, and a dynamic contact angle model is incorporated in the model. Based on simulated results, the basic process of droplet deformation and motion is explained. Three different stages are observed when the droplet starts to move in the electrowetting channel. The droplet can be transported at a high velocity of 17 mm/s at a voltage of V = 80 V. A wide range of influence factors, including voltage, droplet size, friction factor, pinning force, channel height, gravity level, and tilted angle of the channel, are considered. The contact line friction increases almost linearly with the contact line friction coefficient and the pinning force, both retarding the motion of the droplet at parabolic relations. With an increase in the gravity level, the transport velocity of large droplet decreases. However, the droplet smaller than the capillary length shows quite good anti-gravity capability, which can be transported smoothly even when the channel is tilted by 90° in a normal gravity.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3