Electromagnetic Doppler effect in non-reciprocal medium

Author:

Baney Douglas M.1ORCID

Affiliation:

1. Keysight Technologies , 5301 Stevens Creek Blvd., Santa Clara, California 95051, USA

Abstract

Reflected light from a moving object, such as a mirror, is frequency-shifted via the Doppler effect. This well-known phenomenon is used to determine the speed and direction of an object due to the red or blue shifting of the received electromagnetic radiation frequency. To date, the Doppler theory has focused on the propagation of electromagnetic radiation through reciprocal media where the transiting photons have the same speed, regardless of direction. However, optical birefringence exists in solid-state, liquid, and gas media, which results in spatially dependent, and vector field-dependent, propagation velocities. When combined with the Faraday effect, which is employed routinely in laboratory setups and present at galactic scales, non-reciprocal Doppler effects may occur. A non-reciprocal Doppler effect theory is derived showing frequency shift dependencies on the object velocity and the directional speed of light in the medium. This general Doppler theory is shown to simplify the canonical relations for the Doppler effect in systems without a directional dependence on light. In non-reciprocal systems, when the mirror velocity is much less than the speed of light, the general frequency shift relation simplifies to a dependency on the roundtrip average speed of light. This theory provides a basis for the application of the Doppler effect to estimate the velocity of moving objects in non-reciprocal systems.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3