Modeling nonlinear optical interactions of focused beams in bulk crystals and thin films: A phenomenological approach

Author:

Spychala Kai J.1ORCID,Amber Zeeshan H.2ORCID,Eng Lukas M.23ORCID,Ruesing Michael2ORCID

Affiliation:

1. Department of Physics, University of Paderborn 1 , Warburger Str. 100, 33098 Paderborn, Germany

2. Institute of Applied Physics, TU Dresden 2 , Nöthnitzer Strasse 61, 01187 Dresden, Germany

3. ct.qmat: Dresden-Würzburg Cluster of Excellence—EXC 2147, TU Dresden 3 , 01062 Dresden, Germany

Abstract

Coherent nonlinear optical μ-spectroscopy is a frequently used tool in modern material science as it is sensitive to many different local observables, which comprise, among others, crystal symmetry and vibrational properties. The richness in information, however, may come with challenges in data interpretation, as one has to disentangle the many different effects like multiple reflections, phase jumps at interfaces, or the influence of the Guoy-phase. In order to facilitate interpretation, the work presented here proposes an easy-to-use semi-analytical modeling Ansatz, which bases upon known analytical solutions using Gaussian beams. Specifically, we apply this Ansatz to compute nonlinear optical responses of (thin film) optical materials. We try to conserve the meaning of intuitive parameters like the Gouy-phase and the nonlinear coherent interaction length. In particular, the concept of coherence length is extended, which is a must when using focal beams. The model is subsequently applied to exemplary cases of second- and third-harmonic generation. We observe a very good agreement with experimental data, and furthermore, despite the constraints and limits of the analytical Ansatz, our model performs similarly well as when using more rigorous simulations. However, it outperforms the latter in terms of computational power, requiring more than three orders less computational time and less performant computer systems.

Funder

Deutsche Forschungsgemeinschaft

Wuerzburg-Dresden Cluster of Excellence on "Complexity and Topology in Quantum Matter" - ct.qmat

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3