Diffusion-controlled annealing kinetics of interstitial H in SnO2

Author:

Venzie Andrew1ORCID,Stavola Michael1ORCID,Fowler W. Beall1ORCID,Boatner Lynn A.2ORCID

Affiliation:

1. Department of Physics, Lehigh University 1 , Bethlehem, Pennsylvania 18015, USA

2. Oak Ridge National Laboratory, Materials Science and Technology Division 2 , Oak Ridge, Tennessee 37831, USA

Abstract

SnO2 is a prototypical transparent conducting oxide that finds widespread applications as transparent electrodes, gas sensors, and transparent thin-film devices. Hydrogen impurities in SnO2 give rise to unintentional n-type behavior and unexpected changes to conductivity. Interstitial H (Hi) and H at an oxygen vacancy (HO) are both shallow donors in SnO2. An O–H vibrational line at 3155 cm−1, that can be produced by a thermal anneal at 500 °C followed by a rapid quench, has been assigned to the Hi center and is unstable at room temperature on a timescale of weeks. An IR absorption study of the decay kinetics of the 3155 cm−1 O–H line has been performed. The disappearance of Hi upon annealing has been found to follow second-order kinetics. Measurements of the decay rate for a range of temperatures have determined an activation energy for the diffusion of interstitial H in SnO2. These results provide fundamental information about how unintentional hydrogen impurities and their reactions can change the conductivity of SnO2 device materials in processes as simple as thermal annealing in an inert ambient.

Funder

Division of Materials Research

Division of Computer and Network Systems

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3