Mechanism and characteristics of thrust generated by a submerged detonation tube for underwater propulsion

Author:

Shao Xin-ke1ORCID,Kang Yang1ORCID,Li Ning1ORCID,Huang Xiao-long1,Zhang Jun-shan2,Weng Chun-sheng1

Affiliation:

1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

2. School of Equipment Management and Support, University of People's Armed Police, Xi'an 710086, Shaanxi, China

Abstract

The detonation engine, which can produce high specific impulse during the underwater detonation process (UDP), has become the forefront of underwater propulsion. In this paper, the thrust mechanism conducted in UDP and the propagation characteristics of the complex pressure waves are numerically studied, and the correlation between those two features is analyzed. The thrust from UDP is generated in a submerged detonation tube (SDT) and driven by the stoichiometric methane-oxygen mixture. The results show that detonation of the pre-filled combustible gas mixture gives rise to complex pressure waves and delivers several force impulses to the SDT. The impulses present different effects on the thrust performance, which is divided into two stages. In the first stage, before the detonation wave collides with the exterior water, the thrust is provided by the persistent back pressure effect of the detonation product. When the detonation wave propagates through the SDT exit and strikes the gas–water interface, a transmitted shock wave and a reflected shock wave are formed, which produce the impulses dominating the second stage. The reflected shock wave eventually impinges on the inner wall, imposing a force impulse on it. The pressure disturbance on the annular wall caused by the transmitted shock wave and subsequent detonation gas jet leads to another two thrust impulses. Finally, a comparison between the thrust of the SDT and its counterpart in the air is conducted to characterize the influence of UDP, and the effects of dimensional parameters of the SDT are also investigated.

Funder

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds of National key laboratory of Transient Physics

Natural Science Foundation of Shaanxi Province

Foundation research of Engineering University of PAP

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3