Study of the intermittent plasma structure around the divertor simulation experimental module in GAMMA 10/PDX

Author:

Tanaka H.12ORCID,Ezumi N.3ORCID,Sugiyama T.3ORCID,Gamo H.3ORCID,Shigematsu N.3,Yoshikawa M.3ORCID,Kohagura J.3ORCID,Hirata M.3ORCID,Togo S.3ORCID,Ohno N.12ORCID,Sakamoto M.3ORCID

Affiliation:

1. Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University 1 , Chikusa-ku, Nagoya 464-8603, Japan

2. Graduate School of Engineering, Nagoya University 2 , Chikusa-ku, Nagoya 464-8603, Japan

3. Plasma Research Center, University of Tsukuba 3 , 1-1-1 Tenno-dai-cho, Tsukuba 305-8577, Japan

Abstract

We have investigated the generation region of intermittent plasma structures, which could be due to the blob-like cross field transport around the divertor simulation experimental module (D-module) in the tandem mirror device GAMMA 10/PDX. A positive skewness of the ion saturation current was clearly seen when the electrode of the movable probe was located at the radial edge and just in front of the entrance limiter of the D-module. Fourier analysis and conditional averaging clarified that positive spikes intermittently appeared in the same region. This is the first indication that the phenomenon producing the high-density isolated plasma structures occurred in the upstream of the D-module. A negative skewness was also found, and large amplitude fluctuation was detected between regions showing positive and negative skewness. Furthermore, this and light emission fluctuations become stronger during the transient state from attached to detached state on the V-shaped target.

Funder

Japan Society for the Promotion of Science

National Institute for Fusion Science

Nitto

NINS

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3