Numerical study on interactional aerodynamics of a quadcopter in hover with overset mesh in OpenFOAM

Author:

Park Young MinORCID,Jee SolkeunORCID

Abstract

Interactional aerodynamics of a quadcopter in hover is numerically investigated in this study. The main objective is to understand major flow structures associated with unsteady airloads on multirotor aircraft. The overset mesh approach is used to resolve flow structures in unsteady simulation using the flow solver OpenFOAM. The current computational study demonstrates that aerodynamic interaction between quadcopter components strongly affects the rotor wake, generating interesting vortical structures. Multiple rotors in close proximity generate Ω-shaped vortical structures merged from rotor-tip vortices. The fuselage of the current quadcopter deflects the wake flow of the four rotors toward the center of the vehicle. Such interactional aerodynamics, i.e., rotor–rotor and rotor–fuselage interaction, varies the inflow condition of a rotor blade during the rotor revolution. Therefore, the quadcopter experiences unsteady airloads per rotor revolution. Our study indicates that a typical quadcopter would experience 8/rev thrust variations, which are a combined outcome from 4/rev thrust variations on the rotor and 2/rev fluctuations on the fuselage. The current understanding of interactional aerodynamics could help to design reliable and efficient multicopter aircraft.

Funder

National Research Foundation of Korea

National Supercomputing Center, Korea Institute of Science and Technology Information

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference32 articles.

1. Multi-rotor wake propagation and flow development modeling: A review;Prog. Aerosp. Sci.,2021

2. C. Russell , J.Jung, G.Willink, and B.Glasner, “ Wind tunnel and hover performance test results for multicopter UAS vehicles,” Technical Report NASA-TM-219758 ( NASA Ames Research Center, Moffett Field, CA, United States, 2018).

3. Computational aerodynamic modeling of small quadcopter vehicles,2017

4. High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles,2018

5. Experimental study of quadcopter acoustics and performance at static thrust conditions,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3