Flow in multi-layered vegetated compound channels with different bank slopes

Author:

Barman Jyotirmoy1,Kumar Bimlesh1ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Guwahati , Guwahati 781039, India

Abstract

Bank angle and floodplain vegetation emergence determine the flow nature in a compound channel. Two sets of 45° and 90° bank angle compound channel is considered in the present work. Each set considers three cases of vegetation arrangements: no vegetation, multi-layered fully submerged, and multi-layered partially emergent. The flow characteristics like velocity, Reynolds shear stress (RSS), and turbulent kinetic energy (TKE) do not vary much in the cross section in the absence of vegetation. However, with vegetation, the slopes and nearby region are affected the most as it acts as an intermediary region between the main channel and floodplain. An analysis of the anisotropic invariant map shows the dominance of the transverse component in the slopes compared to the main channel and floodplain. The velocity in and around the slopes is higher for steep slopes (90°) compared to a gradual slope (45°) compound channel. The streamwise RSS and bursting events also show higher magnitude near the channel bed in and around the sloping region. This indicates the instability of the steep banks compared to gradual bank slopes. The increase in floodplain vegetation emergence also affects the slopes. The magnitude of RSS and TKE in the slopes is higher with greater vegetation emergence in the floodplain. This shows the higher vulnerability of the slopes in the presence of higher vegetation emergence. From the hydraulic engineering perspective, this study will be helpful in the field of understanding the failure of banks and ways to maintain their stability.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3