Impact of superhydrophobic sphere onto a pool covered by oil layer

Author:

Li Han1,Chen Han1,Li Er-Qiang1ORCID,Zhang Chun-Yu1ORCID,Ding Hang1ORCID

Affiliation:

1. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Abstract

We experimentally investigate the impact of a millimetric superhydrophobic sphere on a water pool covered by a thin oil layer, with the aim of seeking the critical conditions for sphere entrapment at the interfaces. The interfacial tension and viscosity of the thin oil layer are found to have a significant effect on the fate of the impacting spheres that are denser than the liquids: sinking or floating. For the oil layer of low viscosity, the impact dynamic is dominated by the capillary force, and the sphere experiences more or less uniform acceleration after the impact, which is similar to a sphere impacting onto a pure water pool. For the oil layer of relatively high viscosity, the viscous dissipation inside the thin oil layer greatly hinders the descending of the sphere, and thus, it is the viscosity of the oil layer that dictates the acceleration process of the spheres at the early stage of impact. At the late stage, the sphere moves very slowly under water (particularly at the onset of sinking), and the competition between the oil–water interfacial tension and buoyancy determines whether the sphere would eventually sink or float. We then conduct the theoretical analysis of the dynamic processes of the impacting sphere and give the theoretical predictions of the respective critical conditions, which agree well with the experimental observations.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3