Structured illumination with thermal imaging (SI-TI): A dynamically reconfigurable metrology for parallelized thermal transport characterization

Author:

Zheng Qiye12ORCID,Chalise Divya12ORCID,Jia Mingxin12,Zeng Yuqiang1,Zeng Minxiang3,Saeidi-Javash Mortaza3ORCID,Tanvir Ali N. M.3,Uahengo Gottlieb4,Kaur Sumanjeet1,Garay Javier E.4ORCID,Luo Tengfei3ORCID,Zhang Yanliang3ORCID,Prasher Ravi S.12ORCID,Dames Chris12ORCID

Affiliation:

1. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

2. Department of Mechanical Engineering, University of California at Berkeley, California 94720, USA

3. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA

4. Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92161, USA

Abstract

The recent push for the “materials by design” paradigm requires synergistic integration of scalable computation, synthesis, and characterization. Among these, techniques for efficient measurement of thermal transport can be a bottleneck limiting the experimental database size, especially for diverse materials with a range of roughness, porosity, and anisotropy. Traditional contact thermal measurements have challenges with throughput and the lack of spatially resolvable property mapping, while non-contact pump-probe laser methods generally need mirror smooth sample surfaces and also require serial raster scanning to achieve property mapping. Here, we present structured illumination with thermal imaging (SI-TI), a new thermal characterization tool based on parallelized all-optical heating and thermometry. Experiments on representative dense and porous bulk materials as well as a 3D printed thermoelectric thick film (∼50  μm) demonstrate that SI-TI (1) enables paralleled measurement of multiple regions and samples without raster scanning; (2) can dynamically adjust the heating pattern purely in software, to optimize the measurement sensitivity in different directions for anisotropic materials; and (3) can tolerate rough (∼3  μm) and scratched sample surfaces. This work highlights a new avenue in adaptivity and throughput for thermal characterization of diverse materials.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3