Thermal rectification in thin film metalattice structures: A computational study

Author:

Eichfeld Devon A.12ORCID,Chen Weinan234ORCID,Dabo Ismaila23ORCID,Foley Brian M.5,Ramos-Alvarado Bladimir1ORCID

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University 1 , University Park, Pennsylvania 16802, USA

2. Materials Research Institute, The Pennsylvania State University 2 , University Park, Pennsylvania 16802, USA

3. Department of Materials Science and Engineering, The Pennsylvania State University 3 , University Park, Pennsylvania 16802, USA

4. Institute of Computational and Data Sciences, The Pennsylvania State University 4 , University Park, Pennsylvania 16802, USA

5. Laser Thermal 5 , Charlottesville, Virginia 22902, USA

Abstract

Thermal rectification is an asymmetric heat transfer process where directionally dependent transport occurs along a given axis. In this work, geometric parameters that govern thermal rectification in solids composed of various semiconducting materials were investigated utilizing metalattice data for seven materials with pore sizes ranging between 2 and 30 nm. Using numerical simulation, thermal rectification was calculated at different thermal biases in single material systems, including silicon, cubic boron nitride, and diamond, among others. The largest thermal rectification for each material was exhibited in bilayer sample stacks that were thermally matched (i.e., the thermal resistance of each layer in the stack is equal in either forward or reverse direction). Of the materials tested, diamond provided the highest thermal rectification for all cases, with its best case achieving a thermal rectification of 57.2%. This novel thermal functionality will find application in advanced applications for temperature regulation, including resonator systems where thermal effects may significantly alter and/or degrade performance.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3